Detecting Structural Changes in Longitudinal Network Data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel method for detecting structural damage based on data-driven and similarity-based techniques under environmental and operational changes

The applications of time series modeling and statistical similarity methods to structural health monitoring (SHM) provide promising and capable approaches to structural damage detection. The main aim of this article is to propose an efficient univariate similarity method named as Kullback similarity (KS) for identifying the location of damage and estimating the level of damage severity. An impr...

متن کامل

Extracting Network-Wide Correlated Changes from Longitudinal Configuration Data

IP network operators face the challenge of making and managing router configuration changes to serve rapidly evolving user and organizational needs. Changes are expressed in low-level languages, and often impact multiple parts of a configuration file and multiple routers. These dependencies make configuration changes difficult for operators to reason about, detect problems in, and troubleshoot....

متن کامل

Detecting Changes in a Dynamic Social Network

Social network analysis (SNA) has become an important analytic tool for analyzing terrorist networks, friendly command and control structures, arms trade, biological warfare, the spread of diseases, among other applications. Detecting dynamic changes over time from an SNA perspective, may signal an underlying change within an organization, and may even predict significant events or behaviors. T...

متن کامل

Conditional Dependence in Longitudinal Data Analysis

Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian...

متن کامل

Detecting correlation changes in electrophysiological data.

A correlation multi-variate analysis of variance (MANOVA) test to statistically analyze changing patterns of multi-electrode array (MEA) electrophysiology data is developed. The approach enables us not only to detect significant mean changes, but also significant correlation changes in response to external stimuli. Furthermore, a method to single out hot-spot variables in the MEA data both for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bayesian Analysis

سال: 2020

ISSN: 1936-0975

DOI: 10.1214/19-ba1147